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Abstract. We investigate which effectively presented abelian p-groups are isomorphic rela-
tive to the halting problem. The standard approach to this and similar questions uses the no-
tion of ∆0

2-categoricity (to be defined). We partially reduce the description of ∆0
2-categorical

p-groups of Ulm type 1 to the analogous problem for equivalence structures. Using this
reduction, we solve to a problem left open in [5]. For the sake of the mentioned above reduc-
tion, we introduce a new notion of effective ∆0

2-categoricity that lies strictly in-between plain
∆0

2-categoricity and relative ∆0
2-categoricity (to be defined). We then reduce the problem of

classifying effective ∆0
2-categoricity to a question stated in terms of Σ0

2-sets. Among other
results, we show that for c.e. Turing degrees bounding such sets is equal to being complete.

1. Introduction

Following Mal’cev [22] and Rabin [24], we say that an algebraic structure is computable
or constructive if there exists an numbering of its elements by natural numbers under which
the operations, relations and equality become Turing computable. This numbering is called
a computable presentation or constructivization of the structure. For example, a group has
a computable presentation if and only if it has a “recursive presentation” (Higman [16]) with
decidable word problem. This definition also generalizes the early notion of an “explicitly
presented” filed due to van der Waerden [27] (formally clarified by Fröhlich and Shepherd-
son [11]).

The general philosophy of effective algebra is that effectively presented objects should be
studied under effective isomorphisms. Following the standard terminology [1, 10], we say
that a computable algebraic structure is computably categorical or autostable if every two
computable presentations of the structure agree up to a computable isomorphism. Most non-
trivial “natural” examples of computable algebraic structures are not computably categorical.
For example, only very few abelian p-groups [26] are computably categorical, and those are
trivial; see [15, 10, 1] for more examples. This paper contributes to a general framework (e.g.,
[2, 23, 3, 9, 6]) that investigates computable structures which are not computably categorical
but are close to being computably categorical (to be explained).

In contrast to computably categorical structures that are rare, computable structures that
are isomorphic relative to the halting problem 0′, or maybe relative to a few iterations of the
halting problem, often occur in mathematical practice1. That is, if we had an oracle for 0(n),
we could compute an isomorphism. Intuitively, it means that to build an isomorphism it is
sufficient to understand only a few alternations of quantifiers over a computable relation [25].
Indeed, we typically use at most 0′′′-injury techniques when we construct two or more different
computable presentations of an algebraic structure. As a consequence, unless there is a pattern
that we could iterate, the isomorphisms that we can handle are usually at most 0′′′. An
elementary example of this phenomenon is the classical Mal’cev’s construction of a Q-vector

Date: July 31, 2014.
1As usual, 0(n+1) stands for the n’th iteration of the halting problem, up to Turing equivalence. More

generally, the Turing jump operator X → X ′ is well-defined up to Turing equivalence on arbitrary oracles
X ⊆ N.
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space in which linear independence is undecidable [22]. The standard “nice” and the Mal’cev’s
“complicated” presentations are isomorphic relative to the halting problem 0′. In fact, any two
computable copies of this vector space are isomorphic relative to 0′. A non-elementary example
is a remarkable result of Goncharov, Molokov and Romanovskĭı [14] (based on Goncharov [13])
saying that there exists a computable, infinitely generated nilpotent group with exactly two
computable presentations up to computable isomorphism. This bizarre nilpotent group has a
unique computable representation up to 0′′-isomorphism. It is not known whether this upper
bound on the complexity of isomorphism could be improved to some a <T 0′′. It is known,
however, that if any two computable presentations of a structure are 0′-isomorphic, then the
structure has infinitely many computable presentations up to computable isomorphism [12, 10].
For instance, many abelian groups have this property [12]. We refer to [1, 10, 17] for more
examples of this nature.

Seeking a deeper understanding of these and similar constructions, we would like to accu-
mulate more knowledge about computable structures isomorphic relative to a few iterations
of the halting problem. The definition below was suggested by Ash.

Definition 1.1. A computable algebraic structure A is ∆0
n-categorical if every two computable

presentations of A are ∅(n−1)-isomorphic.

Clearly, ∆0
n-categoricity is a natural generalization of computable categoricity (set n = 1), and

thus the notion is interesting on its own right. Ash [2] was the first to systematically study
∆0

n-categorical computable structures. He described ∆0
n-categorical well-orders. Although

there are several further deep results on ∆0
n-categorical structures in the literature ([3, 23,

8], see also Chapter 17 of [1]), our understanding of ∆0
n-categoricity is rather limited even

when n = 2. While computable categoricity was characterized for Boolean algebras, linear
orders, torsion-free ableian groups and many other standard classes ([1, 10]), we don’t have a
satisfactory description of ∆0

2-categoricity in any of these classes. As it seems, ∆0
2-categoricity

is far less well-behaved than computable categoricity. For instance, in contrast to computable
categoricity, ∆0

2-categoricity tends to be different from relative ∆0
2-categoricity2 already in

rather simple algebraic classes [4, 18, 5]. As a consequence, the study of ∆0
2-categoricity

usually requires new algebraic and computability-theoretic ideas (e.g., [9, 18]), and thus such
investigations are of some technical interest as well.

1.1. Complex isomorphisms between simple structures. Our intention is to study ∆0
2-

categoricity and ∆0
2-isomorphisms within an algebraic context which is as simple as possible.

We would like to pick a class where algebra would not be the main obstacle (in contrast to,
say, [23, 9]) and concentrate on the computability-theoretic combinatorics of ∆0

2-isomorphisms.
At the same time we wish ∆0

2-categoricity to have a non-trivial behavior in the class that we
chose. Calvert, Cenzer, Harizanov, and Morozov [5, 4] discovered two classes that perfectly
meet these requirements (as we will see). These are the classes of computable equivalence
structures and of abelian p-groups having Ulm type 1 (to be defined).

In this context, an equivalence structure is an abstraction to the situation when a com-
putable structure has several “components”. For example, think of a direct or cardinal sum
of groups or rings, or imagine a graph having several connected components. We remove all
structure from each component and concentrate on the fundamental property:

From stage to stage, each component can only grow in size.

To build an isomorphism, we at least need to match the sizes of components correctly.

2Recall that a computable structureM is relatively ∆0
n-categorical if the (n−1)′th Turing jump D0(A)(n−1)

of the open diagram D0(A) of A ∼= B computes an isomorphism between A and B. Note A does not have to
be computable.



ABELIAN p-GROUPS AND THE HALTING PROBLEM 3

The reader not familiar with the subject will perhaps be surprised that we still don’t know
which equivalence structures are ∆0

2-categorical. It might be even more surprising that the
study of ∆0

2-categorical equivalence structures involves deep computability-theoretic methods
such as 0′′′-techniques, see satellite paper [7]. The difficulties are rooted in the existence of
∆0

2-categorical computable equivalence structures that are not relatively ∆0
2-categorical [4, 18].

In the paper in hand we investigate abelian p-groups where things get even harder. When
we look at abelian p-groups of Ulm type 1, we essentially add just a little algebra to make
the components non-stable up to automorphism. As a consequence, we have to worry about
algebra as well, but the algebra is relatively tame.

1.2. Results. In [5], Calvert, Cenzer, Harizanov and Morozov attempted to describe ∆0
2-

categoricity for the classically elementary class of non-reduced abelian p-groups having Ulm
type 1. These are direct sums of cyclic and quasi-cyclic (Prüfer) p-groups. Thus, a typical
member of this class is of the form⊕

k∈S
(
⊕
i∈Sk

Zpk)⊕
⊕
j∈J

Zp∞ ,

where Zp∞ is the Prüfer group, S, J ⊆ ω and Sk ⊆ ω for each k. For convenience, we call such
abelian p-groups multicyclic groups. Calvert et. al. [5] obtained several sufficient conditions
for a computable multicyclic group to be ∆0

2-categorical. They left wide open the following
question:

Which computable multicyclic groups are ∆0
2-categorical?

In fact, they asked two questions that are more specific; we will answer one of these two
questions, the other is answered in [7].

A multicyclic group is “almost” an equivalence structure, in the following sense. Given
a multicyclic A, let EA be an equivalence structure having classes reflecting the sizes of el-
ementary summands in A. Observe that A is computably presentable if, and only if, EA

is computably presentable. Unfortunately, it is not the case that an abelian group A is ∆0
2-

categorical if, and only if, the equivalence structure EA is ∆0
2-categorical, as one might expect.

More specifically, it follows from [5] that there exist multicyclic groups with exactly one Prüfer
summand that are not ∆0

2-categrical.
Nonetheless, under some extra effectiveness and algebraic conditions we can get a reduction

to equivalence structures. To obtain such a reduction, we need a new notion of categoricity.

Definition 1.2. Say that a computable algebraic structure is effectively ∆0
2-categorical if

there exists an effective procedure which, given indices i, j of computable copies Mi,Mj of the
structure, produces a Σ0

2-index e for a ∆0
2-isomorphism from Mi onto Mj .

Clearly, we have

relative ∆0
2-categoricity ⇒ effective ∆0

2-categoricity ⇒ plain ∆0
2-categoricity,

and we will see all these implications are strict. The algebraic condition is:

Definition 1.3. We say that a multicyclic group is degenerate if either the orders of its cyclic
summands are bounded, or it has only finitely many Prüfer summands (or both).

Degenerate multicyclic groups are of no interest for us, since a degenerate mulitcyclic group
is ∆0

2-categorical if and only if either its has no Prüfer summands or its cyclic summands are
bounded [7, 5].

The first main result of the paper is:
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Theorem 3.7. Let A be computable non-degenerate multicyclic group. Then A is effectively
∆0

2-categorical if, and only if, the corresponding equivalence structure EA is effectively ∆0
2-

categorical.

Calvert, Cenzer, Harizanov and Morozov [5], using a different terminology, asked

Can a non-degenerate multicyclic group be ∆0
2-categorical?

As we will see, it is not difficult to construct an equivalence structure that is effectively ∆0
2-

categorical. As a consequence of Theorem 3.7, we answer the above question in positive.
In fact, Theorem 3.7 and its corollaries provide us with an infinite family of such groups.
Our proof of Theorem 3.7 heavily relies on the specific uniform properties of effective ∆0

2-
categoricity. We don’t know if the result can be generalized to plain ∆0

2-categoricity, and we
suspect that the answer could be “no”. The proof of Theorem 3.7 also uses a technical result
(Theorem 3.1) that expresses (effective) ∆0

2-categoricity of a multicyclic group in terms of its
p-height function. Theorem 3.1 has some independent interest since its proof gives a necessary
and sufficient condition for a computable multicyclic group to be completely decomposable
effectively in an oracle X. Such studies are not very common for computable p-groups, but
a lot more has been done for torsion-free abelian groups [20, 21, 8]. We also note that the
reader may find the proof of Theorem 3.1 unexpectedly involved. There are two reasons for
this complexity. Firstly, we could not really refer to any classical result in abelian group theory
since the group is not reduced, and classically detaching the divisible part is the first thing
one would do. Secondly, the dynamic process of detaching the divisible part is the core of the
proof since it has to be done in the most “economical” way; this is something we never see in
classical algebraic texts.

1.3. Effective ∆0
2-categoricity. Theorem 3.7 completely separates effective ∆0

2-categoricity
of multicyclic groups from the group-theoretic context and reduces the question to equiva-
lence structures. We thus concentrate on the study of effectively ∆0

2-categorial equivalence
structures.

In Theorem 2.5, we show that effective ∆0
2-categoricity is not dependent on repetitions of

finite classes. That is, it does not matter whether we have one, two, k ∈ ω or infinitely many
classes of some fixed size. We can just keep exactly one class of each finite size that occurs in
the structure. We find ourselves in the following situation. For a set X ⊆ ω, let E(X) be an
equivalence structure having infinitely many infinite classes and exactly one class of size x, for
each x ∈ X. Note that X is Σ0

2 if, and only if, E(X) has a computable copy. We say that a
Σ0
2-set is effectively categorical if E(X) is effectively ∆0

2-categorical. Thus, we further reduce
the situation to a problem for Σ0

2-sets:

Which Σ0
2-sets are effectively categorical?

The second main result of the paper describes c.e. Turing degrees bounding effective cate-
goricity:

Theorem 1.4. A c.e. degree a bounds an infinite effectively categorical set if, and only if, a
is complete.

Theorem 1.4 follows from Theorem 4.2 which says more. More specifically, we isolate a
recursion-theoretic property which captures effective categoricty of a set. We call this property
strong dominance. In the context of c.e. degrees, it guarantees completeness, but not in general
(Corollary 4.11). The reader may compare Theorem 1.4 with the second main result of the
satellite paper [7]. Sections 2 and 4 contain some further results on effectively categorical
Σ0
2-sets which we do not state here.
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We organize the paper as follows. In Section 2, we accumulate some basic knowledge about
effectively ∆0

2-categorical equivalence structures. In Section 3, we prove Theorems 3.1 and 3.7.
In Section 4, we prove the second main result of the paper, and also obtain some further results
on effectively categorical sets. A further discussion can be found in Section 5.

2. Effective ∆0
2-categoricity

Let (ψi)i∈ω be the effective listing of all partial 0′-computable functions from ω to ω ∪{∞}
obtained from the limit lemma. We say that i is a Σ0

2-index, or a ∆0
2-index, or simply an

index for the partial function represented by ψi. Recall that a computable algebraic structure
is effectively ∆0

2-categorical if there exists an effective procedure which, given indices i, j of
computable copies Mi,Mj of the structure, produces a Σ0

2-index e for a ∆0
2-isomorphism from

Mi onto Mj .

2.1. Effective ∆0
2-categoricity of equivalence structures. We use #[i] to denote the size

of a class [i] in an equivalence structure. We call # the size function. We also say that an
equivalence structure is nondegenerate if it has infinitely many infinite classes, and sizes of
finite classes are unbounded.

Proposition 2.1. For a computable, nondegenerate equivalence structure E, the following
are equivalent:

(1) E is effectively ∆0
2-categorical.

(2) There exists a uniform procedure which, given an index of a computable copy of E,
returns a ∆0

2-index for the size function # in that copy.

Proof. Observe that every non-degenerate computable equivalence structure has a regular copy
in which # is ∆0

2. It is sufficient to instantly grow a class representing x to infinity if our
guess changes to x /∈ X. We then reintroduce the size x to the structure, if our guess changes
to x /∈ X. It remains to apply the definition of effective ∆0

2-categoricity. �

Each infinite Σ0
2 set corresponds to a computably presentable equivalence structure E(X)

having infinitely many infinite classes and exactly one class of size n for n ∈ X.

Definition 2.2. An infinite Σ0
2 set X is effectively categorical if E(X) is effectively ∆0

2-
categorical.

The following lemma gives a necessary and sufficient condition for a set to be effectively
categorical. This condition is much more convenient than Definition 2.2 in applications.

Lemma 2.3. For a Σ0
2 set X, the following are equivalent:

(1) X is effectively categorical;
(2) there is a (partial) ∆0

2-function g : ω → ω∪{∞} such that for every total non-decreasing
function ϕe,

g(e) =

{
∞, if ran(ϕe) is infinite,

f, if ran(ϕe) is finite and max ran(ϕe) ∈ X.

(If max ran(ϕe) /∈ X, then g(e) may be either undefined or equal to any value.)

Proof. (1) ⇒ (2). Suppose that X is effectively ∆0
2-categorical. Given e, produce an equiv-

alence structure Re as follows. Create an equivalence class of size max ran(ϕe), and adjoin
this class to either a copy of E(X), if max ran(ϕe) is not finite or is not in X, or to a copy of
E(X \max ran(ϕe)), otherwise. We can produce Re effectively in e by making a class grow to
infinity if it appears to be equal to max ran(ϕe,s) at stage s, and introducing the corresponding
size later if necessary. There is a total computable function h such that Re = Mh(e). There is a
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(total) computable function f which, given Me
∼= E(X), outputs an index for an isomorphism

from Me onto the regular copy of E(X) produced in the proof of Proposition 2.1. Recall that
this regular copy already has a ∆0

2-function ĝ which represents #. Define the desired g by the
rule g(e) = ĝΦfh(e)(0).

(2)⇒ (1). Suppose that such a function g exists. Given e, define a computable function h
such that ϕh(n) is total and

max ran(ϕh(n)) =

{
#Cn, if Me = {Cn}n∈ω is a computable equivalence structure,

∞, otherwise,

for every n. The ∆0
2-index for h and hence g ◦ h can be obtained from e uniformity. If Me

∼=
E(X), then we can use g ◦ h to build an isomorphism from E to the “regular” representation
of E(X) (produced in the proof of Proposition 2.1) uniformly in g ◦ h. �

Remark 2.4. In Lemma 2.3, the ∆0
2-function g : ω → ω ∪ {∞} can be equivalently replaced

by a (partial) ∆0
2-function ĝ : ω → {f,∞}, where f indicates that the domain is finite.

Given a computable equivalence structure R, keep only one class of each finite size repre-

sented in R. Denote the resulted structure R̂ and call it the condensation of R. Notice that

R̂ is computably presentable, since the collection of finite sizes that occur in R̂ is a Σ0
2 set.

Theorem 2.5. A computable, nondegenerate equivalence structure R is effectively ∆0
2-

categorical if, and only if, R̂ is effectively ∆0
2-categorical.

Proof. To prove that effective ∆0
2-categoricity of R̂ implies effective ∆0

2-categoricity of R,
combine the s-m-n Theorem, Proposition 2.1, and Lemma 2.3. For the converse, consider the
Σ0
2 set

{〈m, k〉 : there are at least k + 1 many classes of finite size m in R}.
This set corresponds to an equivalence structure with infinitely many infinite classes having

a computable copy V . Given a computable copy X of R̂, take a disjoint union Y of X to V .
The resulting computable structure is a computable copy of R, and thus has a 0′-computable
function guessing sizes in Y correctly. Since the operation of taking the disjoint union is
effective, an index for the restriction of this function to the domain of X can be obtained
effectively from the index for X. �

3. Categoricity of groups

In this section all groups are countable abelian p-groups, where p is any fixed prime number.
Recall that a non-trivial cyclic p-group is isomorphic to (Zpm ,+) for some m ∈ ω, and recall
that the quasi-cyclic p-group Zp∞ is the direct limit of the sequence

0→ Zp → Zp2 → . . . ,

under the natural identity embeddings. A group is multicyclic if it is countable and is isomor-
phic to a direct sum of cyclic and quasi-cyclic p-groups.

For an abelian p-group A, the p-height hAp (a) of a non-zero a ∈ A is the maximal m ∈ ω
such that (∃b ∈ A) pmb = a if such an m exists, and hAp (a) =∞ otherwise. The p-height of 0

is ∞. In the following, we suppress p in the term p-height, and we typically omit A in hAp (a)
if it is clear from the context what A is. A subgroup V of an abelian p-group A is pure if for
every v ∈ V

hVp (v) = hAp (v).
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Direct summands are always pure, but not every pure subgroup is a direct summand. Nonethe-
less, it is well-known that every pure cyclic subgroup of an abelian group detaches as a sum-
mand. The same holds for a quasi-cyclic subgroup (which is always pure).

The result below describes computable (effectively) ∆0
2-categorical multicyclic groups in

terms of the complexities of their height function.

Theorem 3.1. Let A be a computable multicyclic group.

(1) A is ∆0
2-categorical if, and only if, hp ≤ 0′ in every computable presentation of A.

(2) A is effectively ∆0
2-categorical if, and only if, there exist a uniform procedure computing

a ∆0
2 index for hp ≤ 0′ in a computable copy of A from an index of the computable

copy.

Proof. We prove (1), and then for (2) we observe that the proof of (1) is sufficiently uniform.
Suppose A is ∆0

2-categorical. Similarly to computable equivalence structures, there exists
a computable copy B of A in which hp changes at most once, with essentially the same proof.
Given any computable copy C of A and an isomorphism ψ : C → B, we can determine hp(c)
taking the minimum of heights of elements bi in the decomposition ψ(c) =

∑
imibi, where

mi ∈ Zp and bi are taken from different elementary components of B.

Suppose hp ≤ 0′ in every computable presentation of A. We fix a computable C isomorphic
to A. It is sufficient to find, effectively in hp, a complete decomposition

⊕
i Vi of C into

cyclic and quisi-cyclic summands. Once such a decomposition is found, we could take the
“regular” copy B of A in which such a decomposition is already known, and then map C onto
B component-wise according to the heights.

Informal discussion. Note that C = R ⊕ U , where U is a divisible group and R is reduced.
Furthermore, U is an hCp -computable subgroup of C, and R is isomorphic to a direct sum of
cyclic groups. We of cause have no access to R, since it is not an invariant subgroup. On
the other hand, if we have r + u, where r ∈ R and u ∈ U , then u has no effect on the height
of r + u. Thus, if at a stage we have enumerated finitely many cyclic summands and have
initiated enumeration of finitely many quasi-cyclic summands, then the height of a new chosen
element in the factor-group C/U can be effected (when compared to hCp ) only by those finite
cyclic summands we already have. Since these finite cyclic summands are uniformly effective
in hCp , we will conclude that the whole decomposition is computable uniformly in hCp .

Notations. In the following, {ci : i ∈ ω} stands for an effective listing of C. We may assume
c0 = 0, but it has no effect on the uniformity of the proof, since 0 can be effectively found.
In the following, the parameter ks is counting the number of elementary summands whose
enumerations have been initiated. If we do not introduce any new summand at stage s, then
we set ks = ks−1.

Construction. At stage 0, set V0 = {0} and k0 = 0. At stage s, suppose we have already defined
a finite sequence V0, . . . Vks−1 of cyclic and finite initial segments of quasi-cyclic groups. Let
Ds =

∑
i≤ks−1

Vi. Stage s has substages I and II:

I. Expanding Ds. Let i be least such that Vi contains only elements of infinite height, and Vi
which has not yet been expanded at stage s. If there is no such Vi which needs to be extended,
then proceed to the next substage described below. Otherwise, suppose that v0, . . . , vks−1 are
the generators of V0, . . . , Vks−1 , respectively. Find an element u such that:

(1) pu = vi;
(2) hp(u) =∞;
(3) the sum 〈u〉+

∑
i 6=j〈vi〉 is direct.
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Set vi = u and proceed to the next least j such that Vj needs to be expanded, if there are any
left.

II. Introducing new summands. Let i be least such that x = ci satisfies x /∈ Ds and px ∈ Ds.

Case 1: hp(x) =∞.
– if px = 0, then set vks = x and Vks = 〈x〉.
– if px = u 6= 0, then delay the action until the next substage “expanding Ds+1”

and check if x is in Ds+1 at the end of this substage. If yes, do nothing. If no,
then take a v ∈ Ds such that pv = px, set vks = x− v, and Vks = 〈x− v〉.

Case 2: hp(x) = m <∞. If supd′∈Ds h
C
p (x+d′) =∞, then do nothing. Otherwise, take d ∈ Ds

such that

hCp (x+ d) = sup
d′∈Ds

hCp (x+ d′) = m′

and set x′ = x+ d. Find a ∈ C \Ds such that m′a = x′.
– if px′ = 0, then set vks = a and Vks = 〈a〉.
– if px′ = u 6= 0, then, possibly delaying the substage, wait for a y such that
pm
′+1y = u to be enumerated into Dt at substage I of t ≥ s. If x′ /∈ Ds, then set

vkt = a− y and Vks = 〈a− y〉.

Verification. Note that every search at every substage can be done effectively and uniformly
in hp. (We should still verify that every substage can successfully finish its search.) Given a
parameter f , we write f [s] for its value at stage s.

Lemma 3.2. For every s, Ds =
⊕

i≤ks−1
Vi.

Proof. Note that at every stage we maintain

Vi ∩
∑

j 6=i,j≤ks

Vi = 0,

which is a necessary and sufficient condition for the sum to be direct. �

Lemma 3.3. For every s the substage Expanding Ds of stage s succeeds in extending the
already existing groups Vi, i ≤ ks−1, having non-zero elements of infinite height.

Proof. Take any u satisfying (1) and (2) of the substage. We show that there exists a u′

satisfying (1), (2), and (3). Consider {x : px = 0; hp(x) =∞} 5 C which is a Zp-vector space
of infinite dimension, and let d′, d′′, d′′′, . . . be an infinite basis of this space. By the assumption
the group is non-degenerate, whence there exists a summand H of C of finite rank containing
Ds and u but not containing d(i) for cofinitely many i. Thus, we may assume it is true for
all of the d(i), under a change of notations. Then the d(i) are all Zp-independent in C/H.

Suppose that for every d(i) there exists a non-trivial linear combination

mi(u+ d(i)) =
∑
j

mj,ivj ,

where vj generates Vj at stage s (we omit [s] in vj [s] generates Vj [s]), and 1 ≤ |mi| < p. We
have

mi(u+ d(i)) = 0 mod H

The equality above implies that mid
(i) + mjd

(j) = 0 mod H contradicting the choice of H,

mi, mj and the elements d(i) and d(j). Assuming that Ds already satisfies:

Vi ∩
∑

j 6=i,j≤ks

Vi = 0,
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we conclude that there exists a d(i) such that expanding Vi with using u′ = u + d(i) will not
violate the property above. �

We need to show that the second substage can not be delayed forever and will be finished
once we find a sufficiently large extension of Ds (see the construction). The reader may think
of s in the lemma below as of a stage at which the “Introducing new summands” substage
is delayed and waits for Ds to grow to a sufficiently large Dt having a chain witnessing
some specific height. The algebraic meaning of the lemma is that every finite

∑
j≤k Vj [s] will

eventually be extended to a summand of C, and this process does not depend on substages of
the second form. The proof of the lemma also implies that we are never stuck in extending
Ds to another finite cyclic summand, unless it is already spanned by Ds.

Lemma 3.4. Let Fs be the sum of all elementary components of Ds in the decomposition
Ds =

⊕
i≤ks−1

Vi that are spanned by elements having finite height in C. Then C = N ⊕ Fs,

for some N , and for every x /∈ Ds,

hC/Fs
p (x) = sup

f∈Fs
hCp (x+ f) = sup

f∈Ds
hCp (x+ f).

Proof. The proof is an induction on the number of summands in Ft and it uses the stages at
which these summands were introduced in the construction. The base of induction, Ft = 0,
is a triviality. So suppose Ft detaches as a summand:

C = Ft ⊕N ′.
We prove

hC/Ft
p (x) = sup

f∈Ft
hCp (x+ f) = sup

f∈Dt
hCp (x+ f).

The second equality follows at once since a divisible element can not effect the height.
For the first equality, let U be any minimal divisible subgroup properly containing all the
summands of Dt consisting of elements of infinite height. We have

C = Ft ⊕ U ⊕H,
because U is contained in N ′, is divisible, and whence detaches as its summand. Let

x = f + u+ h

be the decomposition of x into projections.

We have h
C/Ft
p (x) = hHp (h) = hCp (h), because u does not effect the height, and since direct

summands are pure. We also have

hCp (x) = inf{hHp (h), hFtp (f), hUp (u)} = inf{hCp (h), hCp (f)} ≤ hCp (h)

as it follows from the purities of direct summands an from u being divisible. If we allow f to
range over F , the equality can be reached when f = 0. Thus, hCp (h) = supl∈Ft h

C
p (x+ l). We

conclude that h
C/Ft
p (x) = supl∈Ft h

C
p (h + l). Note that the proof stays the same if x ∈ U or

even if we replace Ft by Ft ⊕ U .
Now let Ft =

⊕
j<iXj , and let t+1 be the stage at which one extra finite Xi was introduced.

We must show that Ft+1 =
⊕

j≤iXj and also that Ft+1 detaches as a direct summand of C.

Recall Case 2 of substage II. We had x′ such that px′ ∈ Dt, x
′ /∈ Dt, and

m′ = hCp (x′) = sup
d′∈Ds

hCp (x′ + d′)

which is equal, by the previous, to h
C/Fs
p (x′). If px′ = u 6= 0, then

m′ + 1 ≤ hCp (u) = hCp (f),
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where f is the projection of u onto Ft. If f = 0 was the case, we delayed the stage until the
required divisible element y of needed order appeared. We know, by the previous lemma, that
we did not have to wait forever. If f 6= 0, then by the purity of the direct summand Ft in C,
and because all elements witnessing finite heights are always put into the Vj at once, we were
able to find the needed witness y, but possibly we had to again wait for the divisible part to
be sufficiently expanded.

In both cases we obtain a finite cyclic subgroup of C such that Dt+1 = Xi ⊕Dt is pure in
C. Whence, Dt+1 detaches as a summand of C. �

Lemma 3.5. The group D =
∑

tDt coincides with C.

Proof. The proof of the Lemma 3.4 together with Lemma 3.3 imply that we are never stuck
during the enumeration of D. Suppose there exists an element g 6= 0 of C such that g /∈ D =∑

tDt. There exists a number m such that pmg ∈ D (e.g, pm the order of g). Choose m
least having this property. Then g′ = pm−1g /∈ D and pg′ ∈ D. We again may assume that
the number of g′ is the least possible. Then at a stage t of the construction at which pg′ was
already present in Dt we would have enumerated pg′ into the span of Dt+1, a contradiction. �

We have constructed, effectively in hp, a complete decomposition of C into cyclic and quasi-
cyclic summands. As we have already mentioned above, it gives us (1) of the theorem.

We prove (2) of the theorem. If A is effectively ∆0
2-categorical, then we could obtain a ∆0

2

index for hp using the isomorphism and the index for hp in the “regular” copy B of A. Now
suppose an index for hp can be uniformly computed from the index of a computable copy of
A. The construction in the proof of (1) is uniform in hp. We can build an isomorphism to the
standard copy of A uniformly in hp. �

The next result relates multicyclic groups to equivalence structures. To state the result, we
need a definition:

Definition 3.6. For a multicyclic group A =
⊕

i∈ω Ai, define an equivalence structure EA by
the rule #[i] = m if Ai

∼= Zpm and #[i] =∞ if Ai
∼= Zp∞ .

In the following, we restrict ourselves to non-degenerate multicyclic groups (i.e., having infin-
itely many quasi-cyclic summands). Notice that A is computably presentable if, and only if,
EA is computably presentable. Recall that the latter is equivalent to the sizes of finite classes
being a Σ0

2 (multi)set3.

Theorem 3.7. Let A be computable non-degenerate multicyclic group. Then A is effectively
∆0

2-categorical if, and only if, EA is effectively ∆0
2-categorical.

Proof. Suppose A is effectively ∆0
2-categorical. We can pass from a computable copy of EA

to a computable copy of A in which every summand corresponds to an equivalence class. By
Theorem 3.1, we can compute an index for hp, and then use it to compute sizes of classes in
the computable copy of EA. It remains to apply Proposition 2.1.

Now let EA be an effectively ∆0
2-categorical equivalence structure. For a set X ⊆ ω, let

X−n = {m− n : m ∈ X and m ≥ n}.

Lemma 3.8. Suppose X is effectively categorical. Then for every n the set X ∪
⋃

i≤nX−i
is effectively categorical. Furthermore, the index for the universal guessing function for X ∪⋃

i≤nX−i given by Lemma 2.3 can be obtained uniformly from the index of the universal
guessing function for X.

3If the number of quasi-cyclic summands is finite, then the remark is still valid, but this time both properties
are equal to the Σ0

2 (multi)set being limitwise monotonic – an observation due to Khisamiev [19].
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Proof. Given a partial computable ϕe, define for every 0 < k ≤ n a primitive recursive function
s by the rule ϕs(k,e)(i) = 0 for i < k and ϕs(e)(x+k) = ϕe(x) if ϕe(x) ↓. Let re,0 = #rangeϕe

and re,i = #rangeϕs(k,e) for 0 < k ≤ n. Let g a be the function for X guessing sizes of ranges
of partial recursive functions given by Lemma 2.3.

We define a guessing function d for X ∪
⋃

i≤nX−i. Notice that the re,i are either all finite

or infinities all at once. Also, if re,0 ∈ X ∪
⋃

i≤nX−i, then one of the re,i has to be in X. If

re,i are all undefined, we keep d(e) undefined. If g returns fin for some of the re,i, then either
re,i is finite and is outside X or is finite and belongs to X. In both cases we can safely declare
re,0 finite. If g tells that some of the re,i are infinite, and some of them are still undefined, we
claim that we can keep d(e) undefined until g either declares one of the re,i is finite (in which
case we set d(e) = fin) or tells that all the re,i are infinite (then we set d(e) = ∞). If all of
the re,i are indeed finite but outside X, then we will either keep d(e) undefined, or set d(e)
equal to ∞ if all guesses are ∞, or make d(e) = fin if at least one of the guesses is fin. It
does not matter since re,0 /∈ X ∪

⋃
i≤nX−i. If re,0 (and thus, all the re,i) are in fact ∞’s, then

g must return ∞ for every re,i. If the classes are finite and re,0 belongs to X ∪
⋃

i≤nX−i, then
re,i ∈ X for some i, and g will eventually converge and tell that re,i is finite. �

Let C be a computable copy of A. Define C(pn) = {c ∈ C : pnc = 0, pn−1c 6= 0}. Notice
that C =

⋃
nC(pn). We may view cyclic and quasi-cyclic groups as Zp-modules:

Zpα
∼= 〈ai : pb0 = 0; bi−1 = pbi, 0 < i < α〉,

where α ∈ ω + 1. We use b with subscripts to denote generators of various elementary
summands. Each element in C(pn) is of the form

∑
imibi, mi ∈ Zp, where the elements bi

are generators taken from different components in some fixed complete decomposition of C
satisfying pnbi = 0. We have pn−1bi 6= 0 for at least one i. Then the height of

∑
imibi is equal

to the infimum of heights of the bi, those including heights of bj of orders pm for m < n. Let
X = {m : Zpm is a summand of A}. Clearly {hCp (bi) : pnbi = 0, pn−1bi 6= 0}∩ω = X−n, where
bi are the generators of the elementary components from the fixed decomposition of C. Since
the height of

∑
imibi is equal to the infimum of heights of the bi, we have

{hCp (c) : pnc = 0, pn−1c 6= 0} ∩ ω ⊆ X ∪
⋃
m≤n

X−m.

We show that these sets are equal. Since quisi-cyclic summands are present in C, we may
take any bj of order pm < pn and consider bj + bi, where bi is of order pn and has infinite
height. The height of bj + bi is equal to the height of bj . Therefore,

{hCp (c) : pnc = 0, pn−1c 6= 0} ∩ ω = X ∪
⋃
i≤n

X−n.

For every n, we construct an equivalence structure as follows. For every non-zero c ∈ C(pn),
construct a class of size equal to hCp (c). Denote the resulting equivalence structure by En.
We have En

∼= E(X ∪
⋃

m≤nX−m), where X = {m : Zpm is a summand of A}. By the choice

of X and Lemma 3.8, there is a 0′-effective procedure uniform in n which guesses sizes of
equivalence classes in En correctly. Using this procedure, we can compute hCp (c). It remains
to apply Theorem 3.1. �

Our results have several interesting corollaries. The first corollary is a consequence of
Theorems 3.7 and 2.5:

Corollary 3.9. Effective ∆0
2-categoricity of a non-degenerate multicyclic group A is completely

regulated by the set X = {m : Zpm is a summand of A} ⊆ ω.
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In other words, repetitions of finite summands do not matter. Notice that proving this fact
directly, without any reference to equivalence structures, would require a lot more effort. The
second corollary answers a question left open in [5]:

Corollary 3.10. There exists a computable multicyclic group A in which orders of finite sum-
mands are unbounded and which is ∆0

2-categorical (and is in fact effectively ∆0
2-categorical).

Proof. Follows from Theorems 1.4, 2.5, and 3.7. �

Notice also that the combination of Theorems 1.4, 2.5, and 3.7 gives a lot more information
about (effectively) ∆0

2-categorical multicyclic groups.

4. Bounding effective categoricity is the same as completeness

In this section we prove the second main result of the paper. The proofs contained in this
section heavily rely on Lemma 2.3 and Remark 2.4.

Definition 4.1. We say that a function f is strongly dominant if there is h ≤T ∅′ such that
for each total ϕe, we have f(x) > ϕe(x) for every x > h(e). Note: if we replace “h ≤T ∅′” by
“h ≤T f” then this is equivalent to f ≥T ∅′. A degree is strongly dominant if it computes a
strongly dominant function.

Theorem 4.2. For a c.e. degree a, the following are equivalent:

(1) a = 0′.
(2) a is strongly dominant.
(3) There exists some infinite set X ≤T a such that X is effectively categorical.

Proof. (1) ⇒ (3): Each strongly dominant degree computes an infinite ∆0
2 categorical set.

Hence a strongly dominant degree does not form a minimal pair with ∅′. Is this interesting?
(2) ⇒ (1): This is Theorem 4.8.
(3) ⇒ (2): Fix a c.e. set A and a Turing functional Φ such that X = ΦA is infinite and

effectively categorical via the function g ≤T ∅′. That is, g : ω 7→ {f,∞} satisfies Lemma
2.3(ii) via Remark 2.4. The enumeration of A and the functional Φ induces, in the natural
way, an approximation {Xs}s∈ω of the set X. Define the sequence {zi}i∈ω by the following.
Let zi+1 be the largest number larger than zi such that for some s, we have Xs(j) = 0 for
every zi < j < zi+1 and Xs(zi+1) = 1. This sequence exists because X is infinite, and can be
computed using A (and the enumeration of A). Now define f(i) to be the least stage s such
that X � zi + 1[s] = ΦA � zi + 1[s] converges correctly on all inputs up to and including zi.
Clearly f ≤T A.

Define the computable function p such that for each e, ϕp(e) is the following function.
Define sx to be the first stage larger than sx−1 such that ϕe(x)[sx] ↓. At each stage sx check
if currently we have g(p(e)) = ∞ and ϕp(e)(y − 1) ∈ X, where y is the least input for which
ϕp(e) is not yet defined. If so do nothing at this stage, otherwise define ϕp(e)(y) ↓= y′ where
and y′ is the least number larger than ϕp(e)(y − 1) which is currently in Xsx . Note that the
Recursion Theorem is used here. Now let h(e) = x + 1 where sx is the largest stage of this
form which is less than or equal to the stage t after which gt(p(e)) is stable. Clearly h ≤T ∅′.

Claim 4.3. Fix i, y, s, and let y′ > y be the least number in As larger than y. If zi ≥ y then
we also have zi+1 ≥ y′.

Proof of claim. Since zi+1 > zi we may assume that y ≤ zi < y′. Now apply the definition of
zi+1. �
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Now fix e such that ϕe is total. We show that f(x) > ϕe(x) for every x > h(e). Observe
that g(p(e)) =∞, since sx exists for every x. It follows easily that we must have that ϕp(e) is
total.

Claim 4.4. For every x, we have that at (the end of) stage sx, ϕp(e)(y) ≤ zx, where y is the
maximum element in domϕp(e).

Proof of claim. We proceed by induction on x. At stage s0 the construction will define ϕp(e)(0)
to be the first element of Xs0 . Clearly z0 ≥ ϕp(e)(0), by the definition of z0. Apply Claim 4.3
for the inductive step. �

Now we assume that there is a least number x > h(e) so that f(x) ≤ ϕe(x). This means
that A is stable on the use of ΦA � zx + 1 after stage sx. By Claim 4.4 we have that X �
max domϕp(e) is stable after stage sx. By the definition of h(e) we must have that gs(p(e)) =∞
for every s ≥ sx. Hence it follows that domϕp(e) never grows after sx, a contradiction. �

An infinite Σ0
2 set is (effectively) categorical if the corresponding non-degenerate equivalence

structure E(X) is (effectively) ∆0
2-categorical.

Corollary 4.5. Below each high incomplete c.e. degree there exists an infinite set X which is
categorical but not effectively categorical.

Proof. Follows from the theorem above, and from the second main result of the satellite
paper [7]. �

To prove Theorem 4.8, we accumulate more knowledge about effectively categorical sets.
The lemma below may also be of some independent interest to the reader.

Lemma 4.6. If a degree a ≤ 0′ is strongly dominant then there is some partial a-computable
function F and some total function G ≤T ∅′ such that J∅

′
= F ◦G. (Here J∅

′
(n) = Φ∅

′
n (n).)

Proof. Suppose f ≤T a is strongly dominant via the function g ≤T ∅′. Fix a computable
approximation {fs} of f , i.e. lims fs(x) = f(x) for every x. Define a stage s to be bad for n

if ∅′ changes at stage s below the use of an existing computation J∅
′
(n)[s− 1].

Let p be a computable function (given by the Recursion Theorem) such that for every n
and x, we search for the first stage t > x such that ϕp(n)(z)[t] ↓ for every z < x and one of the
following holds:

(i) g(p(n))[t] ≥ x,
(ii) t is a bad stage for n, or

(iii) there is some z and b with g(p(n))[t] < z ≤ b ≤ x such that b is a bad stage for n and
ft(z) ≤ ϕp(n)(z).

If t is found we set ϕp(n)(x) = max{fu(x) | u ≤ t}.

Claim 4.7. Suppose that b > g(p(n)) is a bad stage for n. Then for every g(p(n)) < z ≤ b we
have ϕp(n)(z) ↓< f(z). Furthermore ϕp(n) is total iff there are infinitely many bad stages for
n.

Proof of claim. The fact that ϕp(n)(z) ↓ follows from (ii) of the construction. Now suppose
that f(z) ≤ ϕp(n)(z). If ft(z) falls below ϕp(n)(z) then (iii) in the construction would ensure
that ϕp(n) gets defined on more and more inputs. If ft(z) remains permanently smaller than
ϕp(n)(z) then ϕp(n) would end up being a total function and we get a contradiction since
z > g(p(n)).

Now suppose there are only finitely many bad stages. Let b be the largest bad stage. Since
ϕp(n)(z) < f(z) for every g(p(n)) < z ≤ b we will eventually stop issuing definitions for ϕp(n)

once ft is stable below b+ 1. Hence ϕp(n) is total iff there are infinitely many bad stages. �
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Now define F (〈n, x〉) by the following. Find the first pair z < y larger than x such that

J∅
′
(n)[z] ↓, there is no bad stage z < b ≤ y and where ϕp(n)(y) has not yet received a

definition at stage t where t is the first stage such that ft(y) = f(y). If such a pair is found we

set F (〈n, x〉) = J∅
′
(n)[z]. Clearly F is a-partial computable. Now define G(n) = 〈n, g(p(n))〉.

Fix n. Suppose that F (G(n)) ↓. Let g(p(n)) < z < y be the corresponding pair. There
cannot be a bad stage b > y because otherwise we must have ϕp(n)(y) ↓. Since this definition
must be issued by the construction after stage t, we must have ϕp(n)(y) > ft(y) = f(y). This

contradicts Claim 4.7. Hence there cannot be a bad stage b > y. Hence J∅
′
(n)[z] = J∅

′
(n) ↓.

This means that if J∅
′
(n) ↑ then F (G(n)) ↑.

Now suppose that J∅
′
(n) ↓. Fix z0 to be any number larger than g(p(n)) where the com-

putation J∅
′
(n)[z0] is stable. There must be some number y0 > z0 such that ϕp(n)(y) ↑ (since

the domain of ϕp(n) is closed downwards and ϕp(n) is not total). The pair z0 < y0 means that
F (G(n)) must be defined, say with a corresponding pair z < y. By the same argument in the

preceding paragraph, we have F (G(n)) = J∅
′
(n)[z] = J∅

′
(n). �

Theorem 4.8. Let a ≤ 0′. Then a is strongly dominant iff a = 0′.

Proof. The right to left direction is trivial, so we assume that the set A has strongly dominant
degree. By Lemma 4.6 we fix a Turing functional Ψ and a computable function g(x, s) such

that J∅
′

= ΨA ◦G, where G(x) = lims g(x, s). Since A ≤T ∅′ we let ΨA(x)[s] be a computable
approximation to ΨA(x) at stage s; this can of course be divergent. We now define a com-
putable sequence {pm(x, s)} of computable functions such that Pm(x) = lims pm(x, s) exists
for every m and x. By the Recursion Theorem there is a computable function q(m) such that

Pm(q(m)) = J∅
′
(q(m)) for every m.

Defining the sequence {pm(x, s)}. We set pm(x, 0) = 0 for every m,x. At stage s + 1
we set pm(x, s + 1) = s + 1 if m ∈ ∅′s+1 − ∅′s or if g(q(m + 1), s + 1) 6= g(q(m + 1), s).
Otherwise set pm(x, s + 1) = pm(x, s). It is clear that Pm(x) = lims pm(x, s) exists for every
m and x. We define the sequence {sm} by the following. Let s−1 be the first stage such
that g(q(0),−) is stable. Inductively define sm to be the least stage larger than sm−1 such
that ΨA(g(q(m), sm))[sm] ↓ where the use of the computation ΨA(g(q(m), sm))[sm] is correct.
(Note that A is used to find the stage sm for m ≥ 0, and each sm exists because Pm(q(m)) is
convergent).

Claim 4.9.

(i) g(q(m), t) = g(q(m), sm) for every t ≥ sm.
(ii) pm(q(m),−) is never increased after stage sm.

Proof of claim. For m = 0 we automatically have (i) since s0 > s−1. (ii) also follows because

(1) sm > ΨA(g(q(m), sm))[sm] = ΨA(G(q(m)) = J∅
′
(q(m)).

The first inequality above holds because we adopt the usual convention: any computation
which converges in t steps will have output less than t. Now if (i) and (ii) holds for m − 1
then we easily see that (i) holds for m; otherwise if (i) fails then the construction will increase
pm−1(q(m − 1),−) after stage sm > sm−1. To see that (ii) holds for m note that Equation 1
holds for m as well. �

Finally to see that ∅′ ≤T A we claim that m ∈ ∅′ if and only if m ∈ ∅′[sm]. This follows
from Claim 4.9(ii). �

We now show a basis theorem for perfect Π0
1 classes. A consequence of this is that there

exists a strongly dominant degree which is generalized low. Hence outside of the ∆0
2 degrees

strong domination and computing ∅′ are not the same.
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Theorem 4.10. Each perfect Π0
1 class P contains a path A which is of strongly dominant

degree.

Proof. Fix a perfect Π0
1 class P . It is easy to see that P contains a member of high degree:

Let T : 2<ω 7→ 2<ω be a function tree such that [T ] = P . Recall that a node σ is extendible
in P if [σ] ∩ P 6= ∅. Since P is perfect, to define T we only need to remove all non-extendible
nodes of P . Hence T ≤T ∅′. Now observe that if C ≥T ∅′′ then T (C) is high, because
C ≤T T (C)⊕ T ≤T T (C)′.

We now argue that A = T (C) has strongly dominant degree, where we take C = {e | ϕe is
total}. Since the set of non-extendible nodes of P is c.e., we fix a computable approximation
{Ts} of T where for each s, Ts is a computable function tree which contains all the currently
extendible nodes of P (at stage s).

Now define f(n) by the following. For each i ≤ n we let σi be a string of length i such that
A ⊃ Tn(σi). If σi exists and σi(|σi|) = 1 we wait for either T to change below level i + 1 or
for ϕi(n) ↓. Define f(n) to be the largest number seen.

It is easy to check that f is total: If we get stuck at some i while waiting to define f(n)
then we must have i ∈ C and so ϕi is total. Clearly we also have f ≤T A. Now define h(n) to
be the least stage s after which Ts is stable on the first n+ 1 levels. We have h ≤T ∅′.

Now take i such that ϕi is total. Let n > h(i). By the definition of f we must have
f(n) > ϕi(n). Hence f is strongly dominant via h. �

Corollary 4.11. There is a strongly dominant degree which is GL1. Hence not every strongly
dominant degree is Turing complete.

Proof. There is a special Π0
1 class where every path is GL1. �

Thus, outside of the ∆0
2 degrees, strong dominance does not guarantee completeness ac-

cording to Corollary 4.11.

5. Further topics

It would be nice to have an answer to:

Question 5.1. Does Theorem 3.7 hold for plain ∆0
2-categoricty?

We conjecture that there exists a non-degenerate multicyclic group which is ∆0
2-categorical

but not effectively so. We also expect that some of the results in the paper can be lifted to
higher Ulm types.
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